

ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ НАУЧНО-ПРОИЗВОДСТВЕННОЕ ПРЕДПРИЯТИЕ «ВИБРОБИТ»

Конвертер интерфейсов LMU400.001

Руководство по эксплуатации

ВШПА.421412.460.020 РЭ

г. Ростов-на-Дону 2019 г.

ООО НПП «ВИБРОБИТ»

Адрес: 344092, Россия, г. Ростов-на-Дону, ул. Капустина, д.8, корп.А Тел./факс: +7 863 2182475, +7 863 2182478 E-mail: info@vibrobit.ru http: //www.vibrobit.ru

Содержание

1 Описание и работа	5
1.1 Назначение	5
1.2 Технические характеристики	5
1.3 Состав изделия (комплектность)	7
1.4 Устройство и работа	7
1.5 Маркировка и пломбирование	9
2 Использование по назначению	9
2.1 Подготовка конвертера LMU400.001 к работе	9
2.1.1 Подключение конвертера LMU400.001 к ПК	9
2.1.2 Настройка параметров работы интерфейса RS485	10
2.1.3 Настройка параметров работы встроенного DC/DC преобразователя	10
2.1.4 Настройка параметров работы интерфейса 1-Wire	10
2.2 Порядок работы с конвертером LMU400.001	12
2.2.1 Подключение датчиков	12
2.2.2 Измерительные функции конвертера LMU400.001	13
2.2.2.1 Диагностические параметры	13
2.2.2.2 Пользовательские параметры	13
2.3 Поддерживаемые команды по интерфейсам связи USB и RS485	14
2.4 Флаги состояния работы конвертера LMU400.001	15
3 Транспортирование и хранение	15
4 Параметры настройки и текущее состояние конвертера	
(таблицы адресов)	16
Приложение А	19

Руководство по эксплуатации (РЭ) предназначено для ознакомления пользователей (потребителей) с назначением и работой конвертера интерфейсов LMU400.001.

ООО НПП «ВИБРОБИТ» оставляет за собой право замены отдельных деталей и комплектующих изделий без ухудшения технических характеристик.

1 Описание и работа

1.1 Назначение

Конвертер интерфейсов LMU400.001 (далее — конвертер LMU400.001) предназначен для для настройки и диагностики датчиков производства ООО НПП «Вибробит» со встроенной электроникой и оснащенных цифровым интерфейсом 1-Wire. Конвертер LMU400.001 позволяет подключать датчики с двумя типами интерфейсов: с выходом по напряжению (аналогичный стандарту ICP) и с унифицированным токовым выходом.

1.2 Технические характеристики

Таблица 1. Основные технические характеристики
--

Наименование параметра	Норма
Интерфейсы связи с ПК	USB, RS485 (протокол ModBus RTU)
Интерфейс связи с датчиками	1-Wire (протокол, подобный MicroLan)
Максимальное количество одновременно подключенных датчиков по интерфейсу 1-Wire	1
Напряжение питания конвертера от шины USB, В	$5 \pm 0,5$
Ток потребления от шины USB, не более, А	0,5
Выходное напряжение питания, В	24 ± 0.5
Максимальный выходной ток нагрузки по выходу +24В, мА	80
Величина выходного постоянного тока встроенного источника тока для подключения датчиков по интерфейсу типа ICP, мА	18,7 ± 0,2
Каналы измерения внешних постоянных сигналов	постоянный ток датчика; напряжение на линии ICP
Диапазон входного тока датчика, мА	0 - 24
Диапазон измерения напряжения на линии ICP, В	0 - 25
Габаритные размеры, мм	90x50x25
Масса, не более, кг	0,1
Время готовности (прогрева) аппаратуры не превышает, мин	3
Режим работы	непрерывный
Допустимая относительная влажность,%	до 95 (при температуре +35 °C и более низких температурах без конденсации влаги)
Атмосферное давление, мм рт.ст.	630800
Время готовности (прогрева), мин., не более	3
Степень защиты по ГОСТ 14254-96	IP30

Таблица 2. Характеристики интерфейса RS485

Наименование параметра	Значение
Количество интерфейсов RS485	1
Рабочее напряжение гальванической изоляции интерфейса связи RS485, В, не более:	400
Электрическое сопротивление изоляции гальванически изолированных	
цепей интерфейса RS485 относительно других внешних цепей конвертера	20
LMU400.001 в нормальных условиях эксплуатации, МОм, не менее:	
Протокол обмена	ModBus RTU (частичная реализация)
Формат данных	без бита паритета, 2 стоповых бита
Пауза между сообщениями, байт, не менее	3,5
Скорость обмена (устанавливается одна из скоростей), бит/с	4800; 9600; 19200; 38400; 57600; 115200; 230400
Режим работы драйвера	полудуплекс
Максимальное число узлов на шине	255
Входное сопротивление драйвера, кОм, не менее	12
Наличие терминирующего резистора 120 Ом	есть*
*Резистор подключается при помощи джампера на этапе сборки (по требованию заказчика резистор 120 Ом может не подключаться).	

Таблица 3. Характеристики интерфейса 1-Wire

Наименование параметра	Значение
Количество интерфейсов 1-Wire	1
Максимальное число узлов на шине	1
Протокол обмена	MicroLan (частичная реализация)
Роль при работе с внешними устройствами (датчиками)	Master
Тип выходного сигнала	ОК *, с подтяжкой к +3,3В резистором 1 кОм
Примечание: * Интерфейс имеет защитные цепи, допускающие кратковременн +24В на линию 1-Wire.	юе попадание напряжения

Таблица 4. Характеристики интерфейса USB

Наименование параметра	Значение
Количество интерфейсов USB	1
Протокол обмена	класс CDC устройства, ModBus RTU (частичная реализация)
Адрес на шине USB в соответствии с протоколом ModBus RTU	0x01
Тип разъема	miniUSB

1.3 Состав изделия (комплектность)

Конвертер LMU400.001 поставляется с комплектом принадлежностей и руководством по эксплуатации.

Состав комплекта принадлежностей приведён в таблице 2:

Таблица 5. Комплектность

Наименование	Назначение	Количество	
Шнур USB 2.0 AM/miniB 5P 1.8м	Питание конвертера, связь с ПК	1	
Розетка 15EDGRC-3.81-03Р	Подключение проводников линии RS-485	1	
Розетка 15EDGRC-3.81-05Р Подключение проводников датчика		1	
Эксплуатационная документация			
Руководство по эксплуатации ВШПА.421412.460.020 РЭ	-	1	

1.4 Устройство и работа

Конвертер LMU400.001 представляет собой цифровой блок преобразования интерфейсов USB и/или RS-485 с протоколами Modbus RTU в однопроводный интерфейс 1-Wire с протоколом типа MicroLan.

Конструктивно конвертер LMU400.001 выполнен в виде малогабаритного устройства в пластиковом корпусе и имеет четыре сигнальных светодиода на верхней панели, а так же три коммутационных разъема на боковых гранях для внешних подключений. Для повышения устойчивости на нижней части корпуса установлены резиновые ножки.

(1 — разъём USB, 2 — разъём интерфейса RS-485, 3 — разъём датчика, 4 — светодиодные индикаторы)

Конвертер LMU400.001 построен на основе высокопроизводительного 32-х разрядного микроконтроллера типа PIC32, что позволяет обеспечивать необходимые скоростные и функциональные характеристики в различных режимах работы. Функциональная схема конвертера позволяет подключать и выполнять обмен данными одновременно по двум интерфейсам USB или RS-485 с устройством на шине 1-Wire. Нормально функционирование конвертера допускает подключение только одного устройства шине 1-Wire.

Питание конвертера LMU400.001 осуществляется от +5В шины USB и не требует внешнего дополнительного источника питания. Для питания подключенных датчиков напряжением +24В конвертер оснащен повышающим DC/DC преобразователем.

Так же для удобства выполнения настройки и диагностики подключенных датчиков конвертер LMU400.001 оснащен источником тока для подключения датчиков с интерфейсом типа ICP.

Помимо основных функций передачи данных между интерфейсами USS/RS485 и 1-Wire в конвертере предусмотрены несколько измерительных каналов для диагностических целей:

• контроль напряжения питания шины USB;

контроль напряжения питания датчиков +24В;

• контроль напряжения линии ICP;

• контроль входного тока 0-20 мА.

Для исключения перегрузки по питанию от шины USB реализован защитный алгоритм обеспечивающий аварийное отключение DC/DC в случае превышения максимально допустимого выходного тока по выходу +24B.

При включении питания параметры работы конвертера загружаются из энергонезависимой памяти. Параметры работы разделены на секции:

• Идентификационная информация;

• Общие параметры работы;

• Калибровка входных каналов;

• Калибровка пользовательских параметров.

К каждой секции параметров работы в энергонезависимой памяти добавляется контрольная сумма, позволяющая проверить достоверность загруженных данных.

Если вычисленная контрольная сумма не совпадает с записанной контрольной суммой в энергонезависимой памяти, то считается, что данные повреждены, и их использовать для работы нельзя.

Каждая секция в энергонезависимой памяти имеет основное и резервное размещение. Если секция параметров из основной секции прочитана с ошибкой, то предпринимается попытка считывания данных из резервной области энергонезависимой памяти. Если по одной из секций параметров работы обнаружена ошибка (из основной и резервной секции), то работа конвертера LMU400.001 блокируется, светодиод 'Alarm' на лицевой панели будет светиться красным цветом.

Для отображения текущего состояния и режима работы конвертера LMU400.001 на верхней панели корпуса размещены четыре светодиодных индикатора:

- Зеленый PWR
- Зеленый Link

• Желтый Warn

• Красный Alarm

Сразу после подключения конвертера к ПК с помощью кабеля USB кратковременно загораются все четыре светодиода на панели конвертера LMU400.001. После этого должны погаснуть все светодиоды кроме зеленого светодиода Pwr, свечение которого свидетельствует от наличии питания по USB и нормальной работе микроконтроллера.

Мигание желтого светодиода Warn на панели LMU400.001 свидетельствует о наличии работоспособного устройства на шине 1-Wire. Конвертер периодически проверяет наличие устройства на шине 1-Wire, считывая с него служебные данные. В случае отсутствия связи по шине 1-Wire мигание светодиода Warn будет прекращено.

Светодиод Link зеленого цвета предназначен для индикации обмена данными по шине USB или RS485. В процессе обмена данными по этим интерфейсам этот светодиод кратковременно загорается синхронно с текущими транзакциями.

Светодиод Alarm красного цвета предназначен для индикации аварийных режимов работы конвертера LMU400.001. Некоторые из этих режимов: Уход за допустимые пределы напряжений: выходного напряжения питания датчика +24B, напряжения +5B от шины USB, а так же значительно превышение тока по входу 0-20 мА. Свечение красного светодиода Alarm так же может быть вызвано внутренними ошибками в работе микроконтроллера конвертера LMU400.001.

В целях обеспечения удобства настройки датчиков с постоянными выходными сигналами конвертер LMU400.001 позволяет настраивать диапазоны измеряемого параметра (физической величины) по входному току датчику и/или по напряжению на линии ICP, с возможностью дальнейшего контроля измеряемой физической величины (пересчет физической величины через входной ток и/или напряжение ICP). Данные доступны для настройки и контроля с помощью ПО Module Configurator.

1.5 Маркировка и пломбирование

Маркировка конвертера наносится на этикетке, приклеенной к нижней части корпуса. Маркировка содержит: товарный знак предприятия, наименование изделия,заводской номер и год выпуска (рис. 2).

Пломбирование производится при помощи наклейки пломбировочной, которая наклеивается на стык верхней и нижней частей корпуса устройства (рис. 3).

Рис. 2 - Маркировка конвертера LMU400.00

2 Использование по назначению

2.1 Подготовка конвертера LMU400.001 к работе

2.1.1 Подключение конвертера LMU400.001 к ПК

Перед использованием конвертер LMU400.001 необходимо подключить к ПК при помощи кабеля USB, убедиться, что подаётся питание 5 В (должен светится зелёный светодиод Pwr). Обмен данными с ПК возможен как при помощи интерфейса USB так и при помощи гальванически изолированного интерфейса RS-485. Питание конвертера LMU400.001 осуществляется от интерфейса USB, поэтому при подключении по RS-485 необходимо подавать питающее напряжение через USB от ПК или другого устройства, обеспечивающего необходимые параметры питания (см. табл. 1).

2.1.2 Настройка параметров работы интерфейса RS485

Конвертер LMU400.001 имеет небольшое количество настраиваемых параметров работы: это настройка идентификационной информации, параметров работы интерфейсов, калибровочные параметры каналов измерения напряжений и тока.

Настройка параметров работы осуществляется с помощью ПО ModuleConfigurator по интерфейсу USB или RS485 (на ПК должно быть установлено ПО Module Configurator, в каталоге configs должен находиться файл конфигурации LMU400.001 Ver.0.xml).

Параметры настройки интерфейса RS485 доступны во вкладке 02. Настройка общих параметров работы LMU400 (рис. 4).

Параметр	Значение		Адрес
01.Разрешение работы RS485	✓	×	0x7700
02.Разрешение изменения параметров по RS485	\checkmark	X	0x7702
03.Скорость работы RS485	115200	▼ 🛛	0x7704
04.Адрес на шине RS485	2		0x7706

Рис. 4 - Пример настройки параметров работы интерфейса RS485 в ПО ModuleConfigurator

2.1.3 Настройка параметров работы встроенного DC/DC преобразователя

Встроенный DC/DC преобразователь предназначенный для формирования выходного напряжения +24В может быть включен или отключен основным микроконтроллером конвертера, в зависимости от текущего режима работы и соответствующей настройки. Параметры настройки встроенного DC/DC преобразователя доступны во вкладке 02.Настройка общих параметров работы LMU400 (puc. 5).

05.Выполнять контроль внешних цепей датчика (U,I) с управлением DC/DC	× 🛛	1	0x7708	
	1	-		۰.

Рис. 5 - Пример настройки параметров работы работы встроенного DC/DC преобразователя в ПО ModuleConfigurator.

В случае включения данной настройки микроконтроллер конвертера будет выполнять постоянный контроль уровней напряжений (выходного напряжения +24В, входного напряжения +5В USB и напряжения на линии ICP) и входного тока датчика. При достижении аварийных значений выполнит отключение DC/DC преобразователя. Попытка последующего запуска DC/DC преобразователя будет выполнена с задержкой около 3 сек.

При снижении напряжения на линии USB ниже допустимого уровня (около 4 B) так же производится аварийной отключение DC/DC преобразователя, но без выполнения попыток повторного старта. Повторное включение DC/DC преобразователя в таком случае возможно после перезапуска конвертера или кратковременного отключения USB кабеля. Данная функция контроля работает всегда и не зависти от параметров настройки конвертера.

Обнаружении аварийных режимов работы по предельным значениям напряжений и тока датчика сопровождается включением красного светодиода Alarm.

2.1.4 Настройка параметров работы интерфейса 1-Wire

Параметры настройки работы интерфейса 1-Wire доступны во вкладке: 02. Настройка общих параметров работы LMU400.010 (рис. 6).

06.Адрес №1 для устройства на шине Microlan с кодом Family 0x23, Hex	0800	8	0x770A
07.Адрес №2 для устройства на шине Microlan с кодом Family 0x23, Hex	0C00	8	0x770C

Рис. 6 - Пример настройки параметров работы интерфейса 1-Wire в ПО ModuleConfigurator

Подключаемые по интерфейсу 1-Wire устройства должны иметь идентификационный номер, который начинается с кода Family 0x23. Конвертер LMU400.001 по умолчанию читает этот код в устройстве по адресам 0x0A00 и 0x0900, а так же по двум адресам указанным в настройках конвертера, Рис. 5.

В случае если к конвертеру подключено устройство (датчик) по интерфейсу 1-Wire, но код Family в устройстве не найден конвертер LMU400.001 периодически запускает цикл повторного поиска устройств. При этом индикация данного состояния на панели конвертера осуществляется путем кратковременных вспышек светодиода Warn. Работа с устройством по интерфейсу 1-Wire в таком режиме допустима, но возможны большие задержки при обмене данными.

2.1.5 Настройка калибровочных параметров

Конвертер LMU400.001 оснащен четырьмя измерительными каналами постоянных сигналов:

- Канал измерения выходного напряжения +24В питания датчиков
- Канал измерения входного напряжения питания +5В от USB шины
- Канал измерения напряжения внешней линии ICP
- Канал измерения входного тока датчика 0...20 мА.

Все измерительные каналы предназначены исключительно для оценочных целей, их погрешности не нормируется и они не могут служить в качестве средств измерений.

Измерительные каналы имеют идентичные параметры настройки и содержит по четыре калибровочных параметра. Для каждого из перечисленных каналов исходным сигналом являются значения выборок АЦП, а расчетным (выходным) является напряжение и/или ток. Калибровочные параметры доступны во вкладке: 03. Основные калибровочные параметры LMU400.010.

В примере описаны калибровочные параметры канала измерения напряжения +24B, остальные измерительные каналы настраиваются идентичным образом (рис. 7).

Параметр	Значение		Адрес
01.Минимальное напряжение U_PWR, В	0.00	8	0x7300
02.Максимальное напряжение U_PWR, В	23.39	8	0x7304
03.Минимальное напряжение U_PWR, АЦП	0.00	8	0x7308
04.Максимальное напряжение U_PWR, АЦП	727.80	8	0x730C

Рис. 7 - Пример настройки калибровочных параметров канала измерения напряжения +24B в ПО ModuleConfigurator

Калибровочные параметры канала измерения напряжения +24В содержат следующие настраиваемые параметры:

- 01.Минимальное напряжение U_PWR, В
- 02.Максимально напряжение U_PWR, В
- 03. Минимальное напряжение U_PWR, АЦП
- 04. Максимально напряжение U_PWR, АЦП

При калибровке измерительного канала измеряется напряжение на линии +24В в двух крайних точках диапазона, и одновременно для этих двух точек указываются значения в выборках АЦП, которые доступны во вкладке 04. Диагностические параметры LMU400 →01.3начения АЦП по входным каналам.

Измеренные значения напряжения и считанные значения АЦП заносятся в соответствующие окна настройки (рис. 6).

Калибровке канала измерения напряжения питания USB +5В производится однократно при изготовлении и требует наличия доступа к печатной плате конвертера, для подключения мультиметра к входной линии +5В.

2.2 Порядок работы с конвертером LMU400.001

2.2.1 Подключение датчиков

Проверяемый датчик необходимо подключить к разъёму датчика как показано на рис. 8, 9. В зависимости от типа интерфейса датчика подключение производится к соответствующим контактам разъёма. Далее необходимо подключиться при помощи ПО ModuleConfigurator. Для этого необходимо выбрать виртуальный СОМ-порт, скорость передачи, в поле «Тип связи с модулем» выбрать Modbus RTU, нажать кнопку *X*.

Для настройки датчиков производства ООО НПП «Вибробит» с помощью конвертера LMU400.001 по интерфейсу 1-Wire требуется файл конфигурации (xml-файл) подготовленный специально для выбранного типа датчиков, который должен находиться в соответствующем каталоге вместе с установленной ПО ModuleConfigurator. Описание параметров и режимов работы а так же методики настройки датчика с помощью конвертера LMU400.001 указанно в соответствующей инструкции по настройке к этому датчику.

Рис. 8 – Подключение датчика с интерфейсом ІСР

Рис. 9 – Подключение датчика с токовым выходом

2.2.2 Измерительные функции конвертера LMU400.001

2.2.2.1 Диагностические параметры

Результаты работы измерительных каналов конвертера LMU400.001 в значениях выборок АЦП (для калибровки) доступны по вкладке: *04.Диагностические параметры LMU400* →*01.Значения АЦП по входным каналам (рис. 10).*

Параметр	Значение	Адрес
01.LMU400-Напряжение U_PWR, АЦП	742.33	0x7200
02.LMU400-Напряжение U_USB, АЦП	823.58	0x7218
03.LMU400-Напряжение U_SENS_ICP, АЦП	1010.50	0x7208
04.LMU400-Ток I_SENS, АЦП	0.00	0x7210

Рис. 10 - Пример результатов измерений по каналам в выборках АЦП в ПО ModuleConfigurator

Результаты работы измерительных каналов конвертера LMU400.001 в значениях измеряемых величин (напряжений и токов) доступны по вкладке: 04.Диагностические параметры LMU400 →02.Измеренные значения по входным каналам (рис. 11).

Параметр	Значение	Адрес
05.LMU400-Напряжение U_PWR, В	23.86	0x7204
06.LMU400-Напряжение U_SENS_ICP, В	23.58	0x720C
07.LMU400-Ток I_SENS, мА	0.00	0x7214
08.LMU400-Напряжение U_USB, В	4.82	0x721C

Рис. 11 - Пример результатов измерений по каналам в значениях напряжений и токов в ПО ModuleConfigurator

2.2.2.2 Пользовательские параметры

В конвертере LMU400.001 предусмотрена возможность расчета пользовательских параметров по измеренным значениям входного тока и/или по величине напряжения ICP. Данный функционал может использоваться, для расчета значения зазора по входному току или напряжению ICP для датчиков смещений, а так же для расчета значений физических величин с других датчиков, выходной сигнал которых задан величиной постоянного тока или напряжения.

Для данного функционала доступны пользовательские калибровочные параметры и результаты измеренных значений пользовательских параметров.

Калибровочные настройки канала измерения параметра по напряжению на линии ICP доступны по вкладке: 05.Пользовательские калибровочные параметры — 01.Канал измерения параметра по линии ICP (puc. 12)

Параметр	Значение		Адрес
01.Минимальное значение параметра по интерфейсу ІСР	0.00	8	0x7800
02. Максимальное значение параметра по интерфейсу ІСР	2000.00	X	0x7804
03.Минимальное напряжение U_ICP, В	6.50	X	0x7808
04.Максимальное напряжение U_ICP, В	19.50	8	0x780C

Рис. 12 - Пример калибровочных настроек канала измерения параметра по напряжению на линии ICP в ПО ModuleConfigurator Калибровочные настройки канала измерения параметра по входному току датчика доступны по вкладке: 05.Пользовательские калибровочные параметры → 02.Канал измерения параметра по току датчика (puc. 13).

Параметр	Значение	1	Адрес
05.Минимальное значение параметра по токовому входу	0.00	×	0x7810
Об. Максимальное значение параметра по токовому входу	100.00	3	0x7814
07.Минимальное значение тока по входу от датчика, мА	4.00	3	0x7818
08.Максимальное значение тока по входу от датчика, мА	20.00	3	0x781C

Рис. 13 - Пример калибровочных настроек канала измерения параметра по входному току датчика в ПО ModuleConfigurator

Калибровка пользовательских параметров выполняется аналогичным калибровке измерительных каналов конвертера LMU400.001. В качестве минимальных и максимальных значений параметров указываются крайние точки диапазона измерения физических величин, а в качестве минимальных и максимальных значения тока (напряжения) указываются соответственно диапазоны выходных сигналов датчиков.

Для сохранения в энергонезависимой памяти только пользовательских настроек предусмотрена отдельная команда в ПО ModuleConfigurator. Общая команда сохранения всех настроек конвертера LMU400.001 не распространяет свое действие на сохранение пользовательских настроек.

Результаты измерения физической величины в соответствии с пользовательскими калибровками доступны по вкладкам: 06.Измеренные значения пользовательских параметров (puc. 14).

01.Значение параметра по интерфейсу ІСР	2627.35	0x7224
02.Значение параметра по токовому входу Isens	-25.00	0x7220

Рис. 14 - Пример результатов измерений физических величины по входному току и напряжению ICP в соответствии с пользовательскими калибровками в ПО ModuleConfigurator

2.3 Поддерживаемые команды по интерфейсам связи USB и RS485

Для выполнения настройки и диагностики конвертера LMU400.001 предусмотрена поддержка нескольких команд по интерфейсам связи (Modbus RTU):

- сохранение всех настроек конвертера LMU400.001 (за исключением пользовательских настроек)
- сброс конвертера
- сохранение пользовательских настроек
- пересчет коэффициентов конвертера
- запрос на выполнение холодного старта
- выполнение холодного старта

Команда «сохранение всех настроек» выполняется путем нажатия кнопки **на** передней панели в ПО ModuleConfigurator. При выполнении этой команды с энергонезависимую память сохраняются все параметры работы конвертера и идентификационная информация, за исключением пользовательских настроек.

Команда «сброса конвертера» — производит перезагрузку основного микроконтроллера конвертера LMU400.001и выполняет повторный запуск микропрограммы. Выполняется путем нажатия

кнопки 💦 на передней панели в ПО ModuleConfigurator.

Остальные команды доступны через выпадающее меню Команды на на передней панели в ПО ModuleConfigurator.

Команда «пересчет коэффициентов конвертера» - предназначена для переинициализации коэффициентов расчета измерительных каналов без перегрузки конвертера LMU400.001.

Конвертер поддерживает «команду холодного старта», предназначенную для восстановления настроек конвертера к исходным значениям по умолчанию. При этом перезаписываются и калибровочные настройки на значения по умолчанию, что может привести к дополнительной погрешности измерения. В случае необходимости выполнения команды «холодного старта» следует выполнять её в следующей последовательности: выполнить команду «запрос на выполнение холодного старта» а затем чем в течении не более 10 секунд выполнить команду «выполнение холодного старта».

2.4 Флаги состояния работы LMU400

Для диагностических целей, по интерфейсам связи USB и RS485 для чтения доступны флаги состояния работы конвертера LMU400.001.

Состояний флагов можно контролировать по вкладке: 07.Флаги состояния работы конвертера LMU400.001 в ПО ModuleConfigurator. Состав флагов конвертера следующий:

- общие биты статуса системы;

- биты статуса системы по сохранению данных во Flash;
- ошибки загрузки данных по секциям;

- загрузка данных из резервных секций.

Флаги состояния работы конвертера LMU400.001 в полном объеме с наименованиями приведены в ПО *ModuleConfigurator* по указанной выше ссылке.

3 Транспортирование и хранение

Конвертер LMU400.001 в упаковке выдерживает транспортирование на любые расстояния автомобильным и железнодорожным транспортом (в закрытых транспортных средствах), водным транспортом (в трюмах судов), авиационным транспортом (в герметизированных отсеках).

Условия транспортирования – Ж по ГОСТ 25804.4-83.

Конвертер LMU400.001 в упаковке выдерживает воздействие следующих транспортных факторов:

- температуры от минус 50 °C до плюс 50 °C;

- относительной влажности 95 % при 35 °C;

- вибрации (действующей вдоль трех взаимно перпендикулярных осей тары) при транспортировании ж/д, автотранспортом и самолетом в диапазоне частот (10 – 55) Гц при амплитуде виброперемещения 0,35 мм и виброускорения 5g;

- ударов со значением пикового ударного ускорения 10g, длительность ударного импульса 10 мс, число ударов (1000 ± 10) в направлении, обозначенном на таре.

Хранение конвертера LMU400.001 в части воздействия климатических факторов внешней среды должно соответствовать условиям 3 (ЖЗ) по ГОСТ 15150–69. Срок хранения не более 24 месяцев с момента изготовления.

Длительное хранение конвертера LMU400.001 производится в упаковке, в отапливаемых помещениях с условиями 1 (Л) по ГОСТ 15150–69.

4 Параметры настройки и текущее состояние конвертера (таблицы адресов)

		DOFILOTOOD		huvouu	<i>uud</i> hon	
гаолица (J. CHRICOK	pernerpoe	идентис	рикаци	νιπφυρ	мации

Адрес регистра (Hex)	Тип данных	Наименование регистра
0x7600	Char (6)	Строка версии ПО микропроцессора
0x7606	Char (12)	Дата компиляции ПО микропроцессора
0x7612	Char (10)	Время компиляции ПО микропроцессора
0x7100	Uint	Заводской номер
0x7102	Uint	Год выпуска
0x7104	Uint	Номер заказа
0x7106	Char	Код монтажника
0x7107	Char	Код регулировщика
0x7108	Char (32)	Дополнительная текстовая информация (32 симв.)

Таблица 7 - Настройка	общих	параметров	работы
-----------------------	-------	------------	--------

Адрес регистра (Hex)	Тип данных	Номер бита	Действие
0x7700	Uint	0	Разрешение работы RS485
0x7702	Uint	0	Разрешение изменения параметров по RS485
0x7704	Uint	-	Скорость обмена, бит/с 0 – 4800; 1 – 9600; 2 – 19200; 3 – 38400; 4 – 57600; 5 – 115200; 6 – 230400
0x7706	Uint	-	Адрес на шине RS485, 1247
0x7708	Uint	0	Выполнять контроль внешних цепей датчика (U, I) с управлением DC/DC
0x770A	Uint	-	Адрес №1 для устройства на шине Microlan с кодом Family 0x23
0x770C	Uint	-	Адрес №2 для устройства на шине Microlan с кодом Family 0x23

Таблица 8 —	Основные калиб	ровочные па	раметры
raomiga o			pamorpoi

Адрес регистра (Hex)	Тип данных	Наименование параметра
0x7300	Float	Минимальное напряжение U_PWR, В
0x7304	Float	Максимальное напряжение U_PWR, В
0x7308	Float	Минимальное напряжение U_PWR, АЦП
0x730C	Float	Максимальное напряжение U_PWR, АЦП

Таблица 9 — Параметры канала контроля напряжения питания USB

Адрес регистра (Hex)	Тип данных	Наименование параметра
0x7310	Float	Минимальное напряжение U_USB, В
0x7314	Float	Максимальное напряжение U_USB, В
0x7318	Float	Минимальное напряжение U_USB, АЦП
0x731C	Float	Максимальное напряжение U_USB, АЦП

Таблица 10 — Параметры канала контроля напряжения питания ІСР

Адрес регистра (Hex)	Тип данных	Наименование параметра
0x7320	Float	Минимальное напряжение U_ICP, В
0x7324	Float	Максимальное напряжение U_ICP, В
0x7328	Float	Минимальное напряжение U_ICP, АЦП
0x732C	Float	Максимальное напряжение U_ICP, АЦП

Таблица 11 — Параметры канала контроля входного тока датчика Isens

Адрес регистра (Hex)	Тип данных	Наименование параметра
0x7330	Float	Минимальный ток датчика I_SENS, мА
0x7334	Float	Максимальный ток датчика I_SENS, мА
0x7338	Float	Минимальный ток датчика I_SENS, АЦП
0x733C	Float	Максимальный ток датчика I_SENS, АЦП

Таблица 12 — Значения АЦП по входным каналам

Адрес регистра (Hex)	Тип данных	Наименование параметра
0x7200	Float	LMU400-Напряжение U_PWR, АЦП
0x7218	Float	LMU400-Напряжение U_USB, АЦП
0x7208	Float	LMU400-Напряжение U_SENS_ICP, АЦП
0x7210	Float	LMU400-Ток I_SENS, АЦП

Таблица 13 — Измеренные значения по входным каналам

Адрес регистра (Hex)	Тип данных	Наименование параметра
0x7204	Float	LMU400-Напряжение U_PWR, В
0x720C	Float	LMU400-Напряжение U_SENS_ICP, В
0x7214	Float	LMU400-Ток I_SENS, мА
0x721C	Float	U_USB_LMU

Таблица 14 — Параметры канала измерения по линии ІСР

Адрес регистра (Hex)	Тип данных	Наименование параметра
0x7800	Float	Минимальное значение параметра по интерфейсу ІСР
0x7804	Float	Максимальное значение параметра по интерфейсу ІСР
0x7808	Float	Минимальное напряжение U_ICP, В
0x780C	Float	Максимальное напряжение U_ICP, В

Таблица 15 — Параметры канала измерения по токовому выходу

Адрес регистра (Hex)	Тип данных	Наименование параметра
0x7810	Float	Минимальное значение параметра по токовому входу
0x7814	Float	Максимальное значение параметра по токовому входу
0x7818	Float	Минимальное значение тока по входу от датчика, мА
0x781C	Float	Максимальное значение тока по входу от датчика, мА

Таблица 16 — Измеренные значения пользовательских параметров

Адрес регистра (Hex)	Тип данных	Наименование параметра
0x7224	Float	Значение параметра по интерфейсу ІСР
0x7220	Float	Значение параметра по токовому входу Isens

Таблица 17 — Флаги состояния работы

Адрес регистра (Hex)	Тип данных	Номер бита	Наименование флага
0x7000	Uint	0	Ошибка загрузки данных, блокировка работы
0x7000	Uint	1	Чтение данных из резервного банка
0x7000	Uint	2	Выполнен запрос на выполнения Хол. Старта
0x7010	Uint	0	Напряжение питания датчика +24V превышает допустимый уровень
0x7010	Uint	1	Напряжение питания датчика +24V ниже допустимого уровеня
0x7010	Uint	2	Напряжение питания USB превышает допустимый уровень
0x7010	Uint	3	Напряжение питания USB ниже допустимого уровеня
0x7010	Uint	4	Напряжение на линии ІСР превышает допустимый уровень
0x7010	Uint	5	Уровень входного тока Isens превышает допустимый уровень
0x7010	Uint	6	На шине Микролан найдено устройство

Таблица 18 — Биты статуса системы по сохранению данных во FLASH-память

Адрес регистра (Hex)	Тип данных	Номер бита	Наименование флага
0x7004	Uint	0	ErrorLoadDataL
0x7004	Uint	1	Запись нормально завершена
0x7004	Uint	2	Запись выполнена с ошибкой
0x7004	Uint	3	Нет такой секции для записи

Таблица 19 — Флаги ошибок загрузки данных по секциям

Адрес регистра (Hex)	Тип данных	Номер бита	Секция
0x7008	Uint	0	Секция калибровки (TuningParam)
0x7008	Uint	1	Секция параметров работы (ParamWorkSys)
0x7008	Uint	2	Секция идентификационной информации (ID_Data)
0x7008	Uint	3	Секция пользовательских настроек (UserTunParam)

Таблица 20 — Флаги загрузки данных из резервных секций

Адрес регистра (Hex)	Тип данных	Номер бита	Секция
0x700C	Uint	0	Секция калибровки (TuningChannel)
0x700C	Uint	1	Секция параметров работы (ParamChannel)
0x700C	Uint	2	Секция идентификационной информации (ID_Data)

Таблица 21. Список системных команд

Адрес регистра (Hex)	Тип данных	Записываемое значение (Hex)	Действие
0xFF00	Char	0x55	Сброс конвертера
0xFF06	Char	0x20	Сохранение пользовательских калибровок
0xFF07	Char	0x21	Coxpaнение во Flash всех параметров конвертера
0xFF01	Char	0x62	Пересчет коэффициентов конвертера
0xFF03	Char	0x3C	Запрос на выполнение холодного старта конвертера
0xFF05	Char	0x22	Выполнение холодного старта конвертера

Приложение А

(обязательное)

Габаритные размеры устройства

Рис. А1 — Габаритные размеры конвертера LMU400.001

Для заметок